jump to search

Financial Health

Mobility Solutions

Ford’s Definition of Mobility

Accessibility for people, goods and services to go where they need or want safely, efficiently and affordably – providing a simplified and fun customer experience. Our goal is to make mobility affordable in every sense of the word – economically, environmentally and socially.

In 2013, customers purchased some 6.3 million new Ford and Lincoln vehicles – 10 percent more than in the prior year and substantially more than the global industry’s growth rate of 3 to 4 percent. Some of these customers bought our vehicles because we delivered products that met their needs better than before. Some bought them because we entered their markets for the first time. And still others bought our vehicles thanks to growing economic prosperity.

Such growth provides our company an opportunity to contribute to a better world through great products, good jobs, stronger communities – and the freedom of mobility. How we will do this is through what we call our “Blueprint for Mobility,” which seeks to redefine the freedom of mobility we have enjoyed since Henry Ford began mass producing vehicles more than a century ago. Ford Motor Company is committed to being the leader in automotive mobility solutions.

When we announced the Blueprint for Mobility in early 2012, it highlighted our thinking about what transportation will look like in 2025 and beyond, and identified the types of technologies, business models, products and partnerships needed to get us there. Throughout 2013, we continued to make progress implementing the Blueprint for Mobility, which is similar in concept to our overall Blueprint for Sustainability. The Blueprint for Mobility sets near-, mid- and long-term goals for solutions to the challenges facing mobility systems now and in the future as the world becomes more populated and urbanized.

Our mobility vision aims for a holistic approach, blending smart transportation with intelligent vehicles and transport systems that are interconnected through a global technology network. We envision a radically different transportation landscape in which pedestrian, bicycle, private car, commercial and public transportation are woven into a connected network that saves time, conserves resources, lowers emissions and improves safety. We know we must view the automobile as one element of a broader transportation ecosystem and look for new ways to optimize the entire system through automation, electrification, services and other technologies.

Today, we’re developing new research vehicles, such as our Ford Fusion Hybrid automated research vehicle, that are helping us explore the opportunities for automated technologies so we can bring them to market faster. In addition, the C‑MAX Solar Energi Concept, which captures electricity from solar panels on its roof, demonstrates a possible next step in electrified vehicles. And we’re working on innovative “apps” that can transform the way we connect with our vehicles.

We see a future of connected cars that communicate with each other and the world around them to make driving safer, ease traffic congestion and sustain the environment. By doing this, we can have an even greater impact on the next 100 years than we did in our first century.

Addressing the Future

As we look to 2020 and beyond, there are a number of changes we already can see:

  • The global population is growing;
  • Life expectancies are increasing; and
  • Today’s emerging markets are becoming the epicenter of growth.

We are already seeing this in China, once viewed as an emerging market. Today, China is the world’s largest car market – and the world’s largest market for luxury goods. In the next few years, we expect China also could be the largest market for luxury vehicles.

Consider that there are about 7 billion people in the world today. Yet within our lifetime, that number will approach 9 billion. Also, there are more than 300,000 people over the age of 100 in the world today. By 2050, that number could surpass 2.5 million. Finding ways to design vehicles with these customers in mind will need to be a focus.

Right now, there are about 1 billion vehicles on the road worldwide. And it took roughly 100 years to get to this level. Yet, with more people and greater prosperity, many experts believe that number will double in the next 20 years, and then possibly double again.

These challenges go well beyond inconvenience. If we look at the numbers and look at the state of our global transportation infrastructure, it is not difficult to see a future in which the flow of commerce – and even the flow of health care and food delivery – are compromised. At Ford, we see global gridlock as not just an issue of business and economics, but as a problem that could have a significant impact on the quality of human life.

Although our executive chairman, Bill Ford, started talking about our Blueprint for Mobility in 2011 at a TED conference, we have been working on these issues for a number of years with a focus on three primary challenges: pollution, congestion and safety.

We are already developing new business models and partnerships toward this future in a way that is shifting the paradigm of what it means to be an automaker. But no one company or industry will be able to solve the mobility issue alone. It is a huge challenge that will only be successful if governments, infrastructure developers and industry collaborate on a global scale. The speed at which solutions take hold will be determined largely by customer acceptance of new technologies, as well as how quickly cities develop the enabling systems and infrastructure.

The last few years have seen technological breakthroughs, such as vehicle-to-vehicle communications, that we didn’t think possible a few decades ago. Increasingly, Ford has become a technology company that makes cars and trucks, and we will continue to explore ways to leverage these technological innovations so we can tackle mobility challenges.

Automated Fusion Hybrid and the Blueprint for Mobility

As the next step in our Blueprint for Mobility, we recently revealed our Ford Fusion Hybrid automated research vehicle that will be used to help us develop new automated driving and other advanced technologies.

In the future, automated driving may help us improve driver safety and manage issues such as traffic congestion and global gridlock. But there are still many questions that need to be answered and explored before this becomes a reality. The goal of the automated Ford Fusion Hybrid research project is to test the limits of full automation and determine the appropriate levels of automation for near- and mid-term deployment.

The ongoing Ford Fusion Hybrid project, in conjunction with the University of Michigan and State Farm, builds on more than a decade of Ford’s automated driving research. The Fusion Hybrid automated vehicle will test current and future sensing systems and driver-assist technologies. We aim to advance development of new technologies with supplier partners that can be applied to our company’s next generation of vehicles.

The Ford Fusion Hybrid was chosen as the test platform for the new research effort because it is an affordable consumer car and among the leaders in offering the most advanced driver-assist technologies in its class. Because the Fusion Hybrid is built upon the latest common global electrical architecture, we expect that the work we do on this vehicle will be relevant across other vehicle platforms for some time.

Developing the necessary infrastructure to support a sustainable transportation ecosystem will require the collaboration of many partners across multiple industries. State Farm and the University of Michigan’s robotics and automation research team are critical to creating the visionary research project. Ford is responsible for developing the unique components that allow the vehicle to function at high levels of automation. The University of Michigan is leading key algorithm development in several areas, including 3-D mapping, localization (e.g., knowing where you are), and planning a safe pathway through the driving environment.

State Farm, meanwhile, is providing expertise by identifying the significant issues to address based on its repository of vehicle accident claims. The insurance company is also data mining our results to understand how a car driven by a human differs from a car driven by a computer. And, State Farm is studying the implications of automated driving for both the automotive and the insurance industries.

Traffic Tamer Challenge

Traveling the streets of London can be an exercise in stress and frustration. Motorbikes, taxis, buses, cyclists, trucks and auto drivers – not to mention pedestrians – all compete on crowded and often narrow city streets.

The word “congestion” is an understatement when it comes to London traffic. In 2012, congestion cost Britain an estimated 4.3 billion (GBP) or the equivalent of 491 (GBP) per commuting household.1

Ford is working to change this. We challenged developers around the world to submit new or existing software applications that have the potential to assist in reducing traffic congestion and make commuting easier. The Traffic Tamer App Challenge ran between October 2013 and March 2014. A total of 23 individuals and teams met the full terms of the contest at the submission deadline in March.

We awarded a total of $25,000 in prize money to four winners, including the grand prize of $10,000.

Developers were encouraged to use Ford’s OpenXC platform, a combination of open source hardware and software designed to create customized vehicle applications and modules.

This wasn’t our only “app” challenge. We also challenged developers to help customers optimize their own fuel-economy performance using the OpenXC platform. We’re planning more “open” platform experiments for 2014.

  1. Source: INIRX