jump to search

Vehicle Safety and Driver Assist Technologies

Case Study: Public Domain Ratings

Safety regulations and public domain rating programs differ around the world, and they are constantly evolving in response to various regional factors. The public domain rating programs that perform vehicle crash testing and other assessments have regularly updated their testing protocols and evaluation criteria to reflect the needs of the region. In the past two years, several of these programs have markedly revised their vehicle rating systems, making it increasingly difficult to achieve the highest ratings. The changes have also caused the testing protocols to become even more inconsistent and divergent between regions. Some of the changes include the addition of new assessment items (such as different-sized dummies in different seating positions), different or more-stringent crash evaluation criteria, and greater emphasis on accident avoidance and driver assist features. A major challenge for a global automotive company like Ford is that the complexities of these evolving programs may initiate a demand for different vehicle technology offerings in different markets.

Ford Increases Virtual Crash Computing Power

A full-vehicle crash test.

In addition, New Car Assessment Program (NCAP) systems are being launched in regions where they have not existed in the past. This is partly due to the influence of a new nonprofit organization based in London called Global NCAP that is promoting the establishment of NCAPs around the world. They have already helped to develop a Latin NCAP system, which is now rating vehicles in Mexico and South and Central America. In 2012, a new ASEAN NCAP was launched in Malaysia.

In the U.S., the NCAP program of the U.S. National Highway Traffic Safety Administration (NHTSA) includes a 35 mph (56 km/h) full frontal impact test, a side impact test consisting of a moving barrier and a rigid pole, and a static stability rating. NHTSA also provides an overall vehicle score (a “star” rating, from one to five stars) representing a combination of the vehicle’s front, side and rollover ratings.

Evaluations conducted by the Insurance Institute for Highway Safety (IIHS) include a 40 mph (64 km/h) frontal offset (40 percent overlap) crash test, a side crash test with a higher barrier, a roof strength test, plus evaluations of head restraints in a rear-impact simulation. To earn a Top Safety Pick from the IIHS, a vehicle must receive “good” ratings in the front, side, roof and head restraint assessments. Beginning in the 2013 program, the IIHS added a small (25 percent) overlap frontal test, simulating minimum engagement or an impact with a narrow object, to their Top Safety Pick rating system. Vehicles that perform at a “good” or “acceptable” level in this new small offset test will earn an IIHS Top Safety Pick+ award. For 2014, a “good” or “acceptable” level in this new small offset test is required to earn an IIHS Top Safety Pick. In addition to the 2014 Top Safety Pick criteria, a minimum “Basic” rating in the new IIHS Forward Crash Prevention protocol required to earn an IIHS Top Safety Pick+ award.

Euro NCAP conducts a 64 km/h (40 mph) frontal offset (40 percent overlap) crash, a side crash and a side pole impact, as well as pedestrian protection and child safety evaluations. Recent changes to the Euro NCAP include updated pedestrian protection and speed assistance protocols. Like NHTSA, Euro NCAP also gives each vehicle an overall star rating representing a combination of individual assessments. In addition to publishing the main vehicle ratings, Euro NCAP has added an Advanced Rewards program to recognize certain safety and accident avoidance technologies that are not currently rated under their protocols. Euro NCAP has also announced significant changes to its rating system between 2014 and 2016. These changes are far-reaching and include a stronger focus on accident avoidance and driver assist features, new and revised crash tests and dummies, and changes to the assessments for pedestrian and child safety.

The emerging testing and assessment methods being developed by Global NCAP are based on existing protocols – typically those from Euro NCAP. In 2013 Latin NCAP introduced significant changes to their program affecting areas such as child restraints, child dummies, applicability of the ratings, fitment rates for safety equipment, seat belt reminders and new requirements for five-star ratings. In addition, revisions to the China and Australasian NCAP programs are planned in stages and began taking effect in 2011. In 2012, changes to China NCAP included increasing the offset frontal impact test speed from 56 km/h to 64 km/h, the introduction of whiplash assessments and the inclusion of rear dummy assessments in the ratings. The Australasian NCAP has published a rolling, five-year “road map” detailing changes they plan to introduce through to the end of 2017. These include whiplash and roof-strength assessments and increased requirements for accident avoidance and driver assist technologies.

Thus, even though Ford vehicles are safer than ever, individual vehicle crash ratings achieved for the 2011 model year and beyond should not be compared to ratings achieved prior to 2011. (See the Data page.)

In addition, while some of the basic test methods are similar in the global evaluation programs, each program varies in the ways in which vehicle ratings are determined. This means that for an identical car, achieving the highest rating in one region or evaluation program does not guarantee the same result in another region or program.

Just as rating programs vary by region, so do regulations, road infrastructure, the competitive landscape and other factors that can influence real-world safety. We work to understand all of these variables and to deploy and offer safety features that meet the needs of the region. And we continue to invest in new technologies to prepare for future societal needs. At Ford, we strive to make technology available on a wide range of our products, even as we remain competitive in the markets in which Ford vehicles are sold. This approach promotes greater societal benefits through broad market acceptance of new technologies, which ultimately improves real-world safety.